The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis

نویسندگان

  • Chiyoko Machida
  • Ayami Nakagawa
  • Shoko Kojima
  • Hiro Takahashi
  • Yasunori Machida
چکیده

Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal-distal, adaxial-abaxial, medial-lateral), and develop into flat symmetric leaves with adaxial-abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present understandings of adaxial-specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1-AS2) functions in the regulation of the proximal-distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial-abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1-AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR-ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal-distal patterning in as1 and as2. AS1-AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial-abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial-abaxial polarity. Possible AS1-AS2 epigenetic repression and activities downstream of ARFs are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning.

During leaf development, establishment of adaxial-abaxial polarity is essential for normal leaf morphogenesis. This process is known to be strictly regulated by several putative transcription factors, microRNA165/166 (miR165/166), a trans-acting short-interfering RNA (tasiR-ARF), as well as proteins involved in RNA silencing. Among the putative transcription factor genes, ASYMMETRIC LEAVES1 and...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins.

Leaves are determinate organs that arise from the flanks of the shoot apical meristem as polar structures with distinct adaxial (dorsal) and abaxial (ventral) sides. Opposing regulatory interactions between genes specifying adaxial or abaxial fates function to maintain dorsoventral polarity. One component of this regulatory network is the Myb-domain transcription factor gene ASYMMETRIC LEAVES1 ...

متن کامل

Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana.

Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant g...

متن کامل

The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity.

Polarity formation is central to leaf morphogenesis, and several key genes that function in adaxial-abaxial polarity establishment have been identified and characterized extensively. We previously reported that Arabidopsis thaliana ASYMMERTIC LEAVES1 (AS1) and AS2 are important in promoting leaf adaxial fates. We obtained an as2 enhancer mutant, asymmetric leaves enhancer3 (ae3), which demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015